Divergence Test: If $\lim_{n \to \infty} a_n$ is not zero or does not exist, then the series $\sum_{n=1}^{\infty} a_n$ ______

Integral Test: Suppose f is a ______, _____, _____, _____, function on $[1, \infty)$ and let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int_1^{\infty} f(x) dx$ is ______.

Limit Comparison Test: Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with ______ terms. If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$ where c is ______ and _____, then either both series converge or both diverge.

Alternating Series Test: Suppose that we have an alternating series. That is $a_n = (-1)^n |a_n|$ or $a_n = (-1)^{n-1} |a_n|$ (assume $a_n > 0$). If ______ for all n and ______, then the series $\sum_{n=1}^{\infty} a_n$ is _____.

Ratio Test: Let $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L.$ (a) If L < 1, then (b) If L > 1, or $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then ______

(c) If L = 1, then _____

Determine if the following series are absolutely convergent, conditionally convergent, or divergent.

1.
$$\sum_{n=1}^{\infty} \left(\arctan(n+1) - \arctan(n) \right)$$

4.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}$$

6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3n+7}$$

7.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{5n+6}$$

8.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+2)!}$$

9. $\sum_{n=2}^{\infty} (\cos(n))^3 (n^3 - n)^{-1}$

10.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt[3]{n-1}}$$